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Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a
modest barrier (height (1010–12 GeV)4) separating it from a ground state with negative vacuum density
of order the Planck scale. We note that metastability is problematic for standard bang cosmology but
is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter,
motivated by the approximate scaling symmetry of the standard model of particle physics and the
primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant
version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly
bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable
phase during each big crunch, passes through the bang into an expanding phase, and returns to the
metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the
infinitely cycling universe is geodesically complete, in contrast to inflation.

© 2013 Elsevier B.V. All rights reserved.

The recent discovery at the Large Hadron Collider of a Higgs-
like particle with mass 125–126 GeV [1,2], combined with mea-
surements of the top quark mass [3], implies that the electroweak
Higgs vacuum may be metastable and only maintained by a mod-
est energy barrier of height (1010–12 GeV)4 that is well below the
Planck density. The conclusion [4] is based on computing the run-
ning of the standard model Higgs quartic coupling λ and finding
that it switches from positive to negative when the expectation
value of the Higgs field h exceeds 1010–12 GeV, under the strong
assumption that there is no new physics at energies less than the
Planck scale that significantly alters the predictions of the stan-
dard model. Since there is no evidence at present for disruptive
new physics, we wish to take the metastability seriously and con-
sider its cosmological implications. The Higgs effective potential is
shown in Fig. 1 in a series of insets that show the potential on pro-
gressively smaller scales (energy density and field are expressed in
Planck units).

One consequence is that the current phase of the universe,
dominated by dark energy and characterized by accelerated expan-
sion, has a finite lifetime before decaying to a contracting phase
with large negative potential energy density. There are even more
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significant consequences for the early universe. The metastability
of the Higgs causes serious problems for big bang inflationary cos-
mology [5]. If the Higgs is not trapped within the barrier when
the universe first emerges from the big bang, it will rapidly evolve
to a state with very negative potential energy density, causing the
universe to contract. However, as is apparent from Fig. 1, the bar-
rier height is so low, the true vacuum so negative (of order the
Planck density), and the metastable field range so narrow com-
pared to the Planck scale that the likelihood of being trapped is
tiny. As for inflation [6], matters are worse. A generic problem
for inflation is that it requires unlikely initial conditions in or-
der to take hold: namely, the inflaton field must be smooth over
more than a Hubble volume [7]. Now, in addition to the inflaton
field being smooth, the Higgs must be trapped over that same vol-
ume or else its negative potential energy density will overwhelm
the inflationary potential energy density, preventing inflation from
occurring. A metastable Higgs thereby makes inflation more im-
probable. Even if inflation does begin, de Sitter fluctuations will
tend to kick the Higgs field over the barrier if inflation begins at
sufficiently high energies [5]. This effect can terminate inflation at
any time, well before the last 60 efolds. In sum, the big bang infla-
tionary picture combined with the metastable Higgs suggests our
universe’s past is unlikely and its future is precarious. The observed
universe seems even more unlikely if the Higgs vacuum is part of
a complex energy landscape that in some places includes stable
Higgs vacua.

0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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Fig. 1. A sequence of expanded views of the metastable Higgs potential for the standard model suggested by recent LHC data. The Higgs field |hc | and its potential energy
density V (hc) values are expressed in Planck units. The bottom figure shows that most of the Higgs field range corresponds to large negative energy density. The effective
potential for |hc | > 1 is subject to quantum gravity corrections, so the shape beyond |hc | = 1 is unknown. The middle inset (upper right) shows the energy barrier whose
height is nearly 25 orders of magnitude below the Planck density. The final inset (upper left) shows the current (spontaneous symmetry breaking) vacuum.

By contrast, a metastable Higgs fits cyclic cosmology [8,9] to a
tee. The current vacuum is required to be metastable (or long-lived
unstable), according to the cyclic picture, in order for the current
phase of accelerated expansion to end and for a big crunch/big
bang transition to occur that enables a new cycle to begin [10].
So, it is essential that there exist scalar fields that can tunnel (or
slowly roll) from the current vacuum with positive potential den-
sity to a phase where the potential energy density is negative and
steeply decreasing as the magnitude of the field grows. The nega-
tive potential energy density triggers a reversal from expansion to
contraction that continues as the field rolls downhill. For the cyclic
model, this behavior would not only have to be part of our future,
but also part of our past, describing the period leading up to the
most recent bounce, a.k.a. the big bang.

Hence, a metastable Higgs could play an all-important role in
cosmology that was not anticipated previously. To develop this
idea, we constructed a theoretical formulation [11] that can in-
corporate all known physics and track the evolution of the Higgs
through the big bounce. In constructing this formulation, we were
guided by a basic principle that appears to pervade physics on the
very smallest and very largest scales: scaling symmetry. On the
micro-scale, the standard model of particle physics has a striking
scaling symmetry if the small Higgs mass term (10−17 in Planck
units) is omitted. This suggests that fundamental physics is con-
formally invariant and the desired mass term may emerge from
the expectation value of another scalar field. On the cosmic scale,
the Planck satellite [12] has shown the universe to be remark-
ably uniform and simple with nearly scale-invariant fluctuations
on the largest observable scales. Together, these observations moti-
vate us to consider Higgs models that incorporate scale symmetry
from the start, including gravity: that is, Weyl-invariant actions
that match phenomenology at the low energies probed by acceler-
ators [11].

A key advantage of these theories for cosmology, as discussed
in Refs. [11,13–15], is that they have classical solutions that make

it possible to trace their complete evolution through big crunch/big
bang transitions. The completion introduces a period between big
crunch and big bang during which, in the classical, low-energy
description, the coefficient of the Ricci scalar in the gravitational
action changes sign. This brief, intermediate ‘antigravity’ phase
is somewhat analogous to the propagation of a virtual particle
within a scattering amplitude describing incoming and outgoing
on-shell particles. In our case, the incoming collapsing phase and
the outgoing expanding phase both involve ‘normal’ Einstein grav-
ity. We have shown that, in appropriate conformal gauges, the
classical evolution across such a bounce is well-defined and es-
sentially unique.

In this Letter, we explore the question of whether there exist
cyclic solutions that will return the Higgs to its metastable vac-
uum after each big crunch/big bang transition. This is not obvious
if the Higgs field in the current phase lies in a shallow potential
well, separated by a small barrier (as compared to the Planck scale)
from a very deep negative minimum of Planck scale depth [4]. One
can imagine that the Higgs field would pop out of the metastable
vacuum during the crunch and never find its way back again in the
next cycle, in which case a metastable Higgs would be incompati-
ble with a cyclic universe.

For our analysis, we use a Weyl-invariant action S = ∫
d4xL(x)

that describes gravity and the standard model

L(x) = √−g

[
1

12

(
φ2 − 2H† H

)
R(g)

+ gμν

(
1

2
∂μφ∂νφ − DμH† Dν H

)

−
(

λ

4

(
H† H − ω2φ2)2 + λ′

4
φ4

)

+ LSM
(
quarks, leptons, gauge bosons,

Yukawa couplings to H , dark matter.
)]

(1)
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Here LSM represents the standard model Lagrangian except for the
kinetic and self interaction terms of the Higgs doublet H , which
are explicitly written in the first three lines of Eq. (1). The addi-
tional scalar field φ is a singlet under SU(2)× U (1), and, therefore,
it cannot couple to the standard model fields, except for the Higgs,
as indicated on the third line, where ω is a small parameter (10−17

in Planck units) that determines the Higgs vacuum expectation
value and the Higgs mass. Neutrino masses and simple models of
the dark matter may be included through rather modest exten-
sions involving gauge singlet fields. Both φ and H are conformally
coupled scalars, with the special coefficient 1/12 required by the
local Weyl symmetry. The action is invariant under Weyl rescaling
with an arbitrary local function Ω(x) as follows:

gμν → Ω−2 gμν, φ → Ωφ, H → Ω H,

ψq,l → Ω3/2ψq,l, Aγ ,W ,Z ,g
μ → Ω0 Aγ ,W ,Z ,g

μ . (2)

Any function that depends only on the ratio H/φ or
(det(−g))1/8 H , or (det(−g))1/8φ, is Weyl-invariant.

Note the relative minus sign between φ and H kinetic energy
terms and couplings to the Ricci scalar R . H is the physical scalar
field corresponding to the Higgs, so in the low energy theory there
is no choice about its canonically normalized kinetic energy term,
and, then, conformal symmetry fixes its coupling to R . Then, the
coupling to the Ricci scalar must be opposite for φ in order to
obtain the proper positive overall coefficient of the Ricci scalar in
Eq. (1); with this choice, its kinetic energy must be opposite as
well to maintain conformal invariance. At first sight, φ appears to
be a ghost. However, this is an illusion, as can be demonstrated
by choosing a Weyl gauge Ω(x) where φ is constant throughout
spacetime so that it is eliminated as a physical degree of free-
dom. In this gauge (referred to as c-gauge in [14]) φ(x) → φ0 we
can express the physically important dimensionful parameters (the
Newton constant G , the cosmological constant Λ, and the electro-
weak scale v) as:

1

16πG
= φ2

0

12
,

Λ

16πG
= 1

4
λ′φ4

0 , H†
0 H0 = ω2φ2

0 ≡ v2

2
. (3)

The original action, Eq. (1), determines the conformally-in-
variant effective action for the relevant cosmological degrees of
freedom for a homogeneous and isotropic Friedmann–Robertson–
Walker (FRW) universe [15]:
∫

dτ

(
− 1

2e

[(
∂τ (aφ)

)2 + (
∂τ (ah)

)2]

− e
[
a4 V (φ,h) + ρr + C

√
ρra2h2 +K(

φ2 − h2)a2]) (4)

where τ is conformal time, e is the lapse function, C is a di-
mensionless constant, K is the spatial curvature, and the homo-
geneous function of degree four, V (tφ, th) = t4 V (φ,h) describes
the Higgs potential. Here we treat the gauge bosons and fermions
as a radiation fluid at temperature T , inducing a term of the form
T 2 H† H ∼ √

ρra2h2 in the effective potential for the Higgs field,
where ρr/a4

E ∝ T 4 is the radiation density in Einstein frame and ρr

is a constant.
The classical equations following from Eq. (4) can be analyzed

in various conformal gauges (c-gauge, E-gauge, γ -gauge) as de-
scribed in Ref. [14]. In each gauge we label the fields with a
corresponding subscript (ac, φc,hc) or (aE , φE ,hE ) or (aγ ,φγ ,hγ ).
In the c-gauge already described, the conformal gauge freedom in
(2) is used to set φc = φ0 = 1 in Planck units, eliminating the φ de-
gree of freedom. In the Einstein gauge, the coefficient of the Ricci
scalar in (1) is set to a constant 1

12 (φ2
E − h2

E ) = 1
2 , reducing (φ,h)

to a single scalar degree of freedom. Finally, in the unimodular or
γ -gauge the determinant of the metric is set equal to minus one,
or aγ = 1. In this gauge there clearly is no cosmological singular-
ity, while all the dynamics including the expansion of the universe
is represented smoothly by the fields φγ and hγ . The cosmologi-
cal evolution may be studied in any gauge, but for the purposes
of analyzing and interpreting the solutions it is often useful to
translate the results into gauge-invariant quantities whose physi-
cal meaning is clear in some particular gauge. One such quantity is
h/φ = hc/1 = hE/φE = hγ /φγ , which represents the magnitude of
the Higgs field in Planck units in c-gauge (hc). Another is [14] χ =
1
6 (−g)

1
4 (φ2 − h2) = 1

6 (−gc)
1
4 (1 − h2

c ) = 1
6 (φ2

γ − h2
γ ) = a2

E sign(χ),

which represents the square of the scale factor in E-gauge, a2
E =

|χ | = 1
6 |φ2

γ − h2
γ |; note that sign(χ) is gauge invariant. Yet a third

useful gauge-invariant quantity is aφ = ac · 1 = 1 · φγ .
For finding and exploring bouncing FRW cosmologies, the uni-

modular γ -gauge is most convenient, as discussed in Ref. [14].
In the case that the Higgs potential is of purely quartic form,
V (φγ ,hγ ) = 1

4 (λh4
γ + λ′φ4

γ ), we have produced complete analytic
solutions [15] for (φγ (τ ),hγ (τ )) for all values and signs of (λ,λ′),
including radiation ρr , curvature K, and all initial conditions for
the fields (φγ ,hγ ) and their derivatives (φ̇γ , ḣγ ). (We did not con-
sider the thermal contribution proportional to C in Eq. (4) in [15],
but its inclusion is trivial in the same approach.) These studies
yielded all solutions not just some special cases, thus teaching
us how to construct bouncing cosmological spacetimes for all the
fields φ, h, gμν .

The realistic Higgs potential analyzed in this Letter is a small
deformation of the quartic potential above for which exact analytic
solutions were obtained, so the generic properties of the cosmolog-
ical solutions are similar. We will discuss the realistic case below
using numerical methods but guided by our knowledge of the ex-
act solutions so that we know our solutions are generic rather than
based on wishful assumptions about initial conditions.

The evolution of an FRW universe with Higgs field and radiation
is represented in γ -gauge by the two dynamical quantities φγ and
hγ . Using the gauge invariant quantity |χ | = a2

E = |φ2
γ − h2

γ |, one
sees that the cosmic singularity in Einstein frame at aE = 0 corre-
sponds to crossing the light-cone in the φγ –hγ plane (see [14,15]).
In unimodular γ -gauge, for which aγ = 1, solutions are smooth
across the light-cone and, hence, can be continued through the big
crunch/big bang transition. Thus, in this context, unimodular gauge
and all gauges smoothly related to it are regarded as good confor-
mal gauges. In contrast, in E-gauge some quantities are singular
at aE = 0. For example, E-gauge assumes that the gauge-invariant
quantity 1 − h2/φ2 is non-negative; however, our complete set of
solutions show that this is not true for generic initial conditions.
Hence, E-gauge is a bad gauge choice for studying the complete
evolution of FRW cosmologies.

To study the metastable Higgs, we numerically solve the equa-
tions of motion for the action in Eq. (4) using the quantum cor-
rected Higgs potential:

V (φ,h) ≡ 1

4
φ4

(
λ′ + λ(h/φ)

(
h2

φ2
− ω2

)2)
, (5)

where the factor multiplying φ4 is Weyl-invariant. In the c-gauge,
with φc = φ0 = 1 in Planck units, this looks like the familiar
Higgs potential including the quantum corrected running cou-
pling λ(h/φ0). Then ω = (246 GeV)/φ0 gives the Higgs expectation
value, and 1

4 λ′φ4
0 gives the cosmological constant, both in Planck

units in today’s Higgs vacuum.
In order to study cyclic solutions, in this Letter we shall ar-

tificially take λ′ to be negative and small compared to all other
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scales. This is to mimic an additional effect needed in a cyclic
model, where λ′ would be replaced by a field that rolls or tunnels
from small positive energy density (corresponding to the current
dark energy density) to a negative value to trigger the transforma-
tion from expansion to contraction. This field could even be the
Higgs if tunneling is included. That is, when the Higgs tunnels, it
jumps to a state with negative potential energy density that plays
the same role as λ′ in transforming the universe from expansion to
contraction. For the purposes of exhibiting the stable cyclical be-
havior of the Higgs, however, the same effect can be obtained by
setting λ′ < 0, in which case the transformation occurs when the
density of matter and radiation in the current spontaneous sym-
metry breaking vacuum falls below |λ′|.

For the running quartic coupling λ(h/φ), we assume the form
computed in Ref. [4]. Rather than use the precise result, which
cannot be easily expressed in closed form, we use a simpli-
fied expression that captures the essential features: a metastable,
spontaneous symmetry breaking Higgs vacuum, with a barrier of
∼ (1010–12 GeV)4 separating it from the true negative energy den-
sity vacuum. A simple parameterization that reproduces the key
features in Fig. 1 is:

λ(h/φ) = λ0

(
1 − ε ln

(
h

ωφ

)2)
(6)

where λ0 is chosen to fit the observed Higgs mass in today’s Higgs
vacuum at h/φ = ω ≈ 10−17, and ε is chosen such that the quartic
coupling passes below zero at hc ≈ 1012 GeV. (To avoid logarith-
mic singular behavior for our numerical computations, we include
small cutoff parameters inside the log not shown here because the
solutions are insensitive to them.)

Our principal finding is that there exists a continuous band of
solutions that undergo repeated cycles of expansion, contraction,
crunch, bang and back to expansion again in which the Higgs field
returns to the metastable Higgs vacuum during each expansion
phase and that these infinitely cycling solutions are geodesically
complete. The band corresponds to solutions whose total Higgs
kinetic plus potential energy density lies in a range that extends
from a little above the barriers in Fig. 1 (second inset) to the local
minimum of the potential corresponding to the current vacuum.
As long as the Higgs initial condition lies in this band after the
bang, it returns to the stable band after each subsequent big bang.
It is then trapped within the depression within the potential barri-
ers (second inset of Fig. 1) and its kinetic energy red shifts until it
settles into a spontaneous symmetry breaking vacuum (third inset
of Fig. 1). Due to the negative cosmological constant (λ′) the total
energy density eventually becomes negative and the evolution re-
verses from expansion to contraction. Now the Higgs field kinetic
energy density begins to blue shift until its oscillations grow to
the point where it jumps beyond the barriers and approaches the
Planck scale at the big crunch. After passing through the region
with h2

γ > φ2
γ , the process begins again.

The trajectory in the φγ –hγ plane is illustrated in Fig. 2 for
the case of no anisotropy. The evolution of φ, h and the gauge-
invariant ratio hc = h/φ corresponding to the Higgs field value
in c-gauge are shown in Fig. 3. The 45 degree lines correspond
to a2

E = |(1/6)(φ2
γ − h2

γ )| = 0, a singularity corresponding to ei-
ther a big crunch or a big bang. Between the crunch and bang
is a brief intervening period in which h2

γ > φ2
γ and the coeffi-

cient of R in the action (1) changes sign, as discussed in Ref. [14].
Fig. 2 shows that the solution passes without incident through
each crunch/bang transition. As the trajectory passes through the
light-cone-like boundaries in Fig. 2, |hγ /φγ | approaches unity (see
the jumps in Fig. 3a), so the Higgs field has popped out of the
metastable vacuum, as anticipated. Then, beginning from the left

Fig. 2. Figure (a) shows the back-and-forth trajectory of hγ and φγ in the φγ –hγ

plane. For the purposes of illustration, the plot is in Planck units and an unre-
alistic Higgs mass of order unity (in Planck units) has been chosen to make the
features visible. For smaller Higgs masses, the behavior is qualitatively similar. Al-
though the trajectory appears to be a straight slanted line when shown on this
scale, figure (b) is a blow-up that shows the trajectory to be more complicated.
In this plane, the light-cone-like lines correspond to the singularity in the Einstein
frame, a2

E = (1/6)|φ2
γ −h2

γ | = 0. In the left and right quadrants, the trajectory moves
along an approximately fixed angle corresponding to a fixed Higgs value (constant
hc = hγ /φγ ), the current vacuum. As the trajectory moves towards the light-cone,
the universe contracts (aE shrinks); crossing the light-cone corresponds to the big
crunch/big bang transition; and moving away from the light-cone corresponds to
expansion (growing aE ). In figure (b), the axis perpendicular to the trajectory (⊥)
has been greatly expanded to show the combination of rapid, small amplitude os-
cillations of the Higgs around the vacuum (⊥ direction) and the comparatively slow
cycles of expansion and contraction of the scale factor (‖ direction). From this figure
it can be seen that cycles are quasi-periodic: similar but not identical, they explore
an invariant torus in phase space as expected from the KAM theorem.

quadrant say, the trajectory goes through a period of contraction,
passes through a crunch (the first 45 degree line) and bang (the
second 45 degree line), and enters a period of expansion where it
traverses deep into the right quadrant, corresponding to increasing
a2

E ∼ χ ∝ φ2
γ − h2

γ . During this phase, the Higgs field is observed
to move towards zero and, as the expansion continues, to oscil-
late and slowly settle down (due to Hubble red shift) into one
of the symmetry breaking vacua, as discussed above. Due to red
shifting, the sum of the (positive) radiation and Higgs oscillatory
energy densities plus the (negative) cosmological constant term
λ′φ4

γ eventually reaches zero. The Hubble expansion reverses to
contraction, the trajectory begins to move towards the left quad-
rant, the radiation and Higgs oscillation densities begin to grow
due to blue shifting until the crunch and bounce, and the cycle
begins again. The cycles are not identical, as can be seen from
the back and forth trajectories over several cycles in Fig. 2b and
by carefully comparing the Higgs oscillations from one cycle to
the next in Fig. 3a. The classical equations turn out to obey the
assumptions of the Kolmogorov–Arnold–Moser (KAM) theorem, ac-
cording to which a weakly nonlinear perturbation of a classically
integrable system, generically deforms but does not remove the
invariant tori in phase space. In our case, the equations are in-
tegrable in the case of no coupling between h and φ, as shown
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Fig. 3. Graphs of the evolution of (a) the Higgs field (hc = hγ /φγ ), and (b) the scale
factor (ac = φγ ) and hγ , for the trajectory shown in Fig. 2. For the purposes of
illustration, the plot is in Planck units and an unrealistic Higgs mass of order unity
(in Planck units) has been chosen to make the features visible. For smaller Higgs
masses, the behavior is qualitatively similar. In (a), the Higgs oscillates rapidly with
small amplitude around a fixed value (the current vacuum) for most of a cycle and
then spikes to large values up to the Planck scale during the crunch/bang transition.
When the spikes in (a) cross ±1 (the Planck scale, beyond the range shown here),
the light-cone in Fig. 2a is being crossed, corresponding to a big crunch/big bang
transition where aE vanishes.

in [15], and the small coupling between h and φ is a perturbation.
Hence, the system cycles forever in quasi-periodic fashion and only
explores a torus in phase space that is stable under perturbations,
as illustrated in Fig. 2b.

In Fig. 3b, φγ oscillates smoothly while the evolution of hγ has
barely detectable, high frequency oscillations (magnified in the in-
set) corresponding to the Higgs field oscillating back and forth in
the potential well of the metastable phase.

Although the figures illustrate the case with no anisotropy, the
effects of anisotropy (combined with radiation) can be easily sur-
mised based on the results in Ref. [14]. Namely, anisotropy only
has a significant role near the big crunch/big bang transition, mod-
ifying all passes through the light-cone shown in Fig. 2a. The paths
are distorted so that they travel precisely through the origin of the
φγ –hγ plane, traverse a small loop in the upper or lower quad-
rants and then exit through the origin again into the next big bang
expansion phase. The size of the loop depends on the radiation
density; higher radiation density results in a smaller loop [14]. (To
compare cases with and without anisotropy, see Fig. 1 in [14].) This
imposes a significant dynamical behavior on (hγ , φγ ) where they
are both forced to be zero at the bang, but approach a ratio which
is exactly 1, namely, hc = hγ /φγ = 1 at the crunch/bang [14]. Af-
ter the bang and far from the singularity, the distorted path ap-
proaches close to the trajectory without anisotropy. So anisotropy
only helps ensure that the Higgs field is trapped in the next phase
of expansion.

It is natural to imagine that, during the bounce, significant ra-
diation density (parameterized by ρr ) is produced by degrees of
freedom that couple to the Higgs because the Higgs undergoes
such rapid change. In Ref. [14], it was shown that radiation pro-

Fig. 4. Plot of the Einstein frame scale factor aE and Higgs field value in γ -gauge hγ

versus cumulative FRW time, t = ∫
dτ aE (τ ). If the entropy increases by a constant

factor every cycle (e.g., due to the production of radiation that couples to the Higgs
when the Higgs goes through rapid variation during the crunch/bang transition),
then so does the scale factor (solid curve) leading to exponential growth over many
cycles, as indicated by the slanted line. The Einstein-frame temperature at given
cosmic time t is the same as it was a cycle earlier or will be a cycle later; and
the behavior of |hγ |a1/2

E (shown in red dashed curve), is the same on average from
cycle to cycle. That is, as the maximum a2

E = φ2
γ − h2

γ increases from one cycle to
the next, the amplitude of the oscillations in |hc | = |hγ /φγ | decreases.

duced during the antigravity phase backreacts by speeding up φγ

and hγ such that the universe emerges from the big bang more
rapidly than it entered the big crunch, with the consequence that
the scale factor aE grows from cycle to cycle, as shown in Fig. 4.
The duration of each cycle in proper FRW time is set by the value
of the (negative) cosmological constant λ′ , so it does not change.
Likewise, the temperature of the universe in Einstein frame at
maximum scale factor does not change from cycle to cycle. This
echoes the scenario envisaged in the cyclic model in Ref. [8], but,
remarkably, here it is accomplished through the standard model
with a metastable Higgs. What does change with each cycle is
the amplitude of the oscillations in the Higgs field around the
symmetry-breaking minimum. As radiation is produced, the pa-
rameter ρr grows, and the Higgs oscillation amplitude decreases.

Finally, we wish to demonstrate the surprising effect the Higgs
can have in enabling cyclic universes to be geodesically complete,
in contrast to inflationary scenarios, including “eternal inflation”.
Inflationary scenarios are well known to be at most semi-eternal to
the future and, hence, necessarily dependent upon some assumed
initial condition [16]. For our cyclic solutions, we have already em-
phasized in [14] and here that the solutions may be continued
arbitrarily far backward in conformal time through bounce after
bounce. We shall now compare cyclic and inflationary scenarios
using a coordinate-invariant definition of geodesic completeness.

Inflationary scenarios, if they allow for any forms of energy
other than inflationary potential energy at early times, generically
lead to a singularity at finite conformal time in the past. In consid-
ering the global structure of inflationary spacetime, it is sometimes
considered that the universe somehow became stuck an arbitrar-
ily long time in the past in a positive energy false vacuum. In the
flat slicing of pure de Sitter spacetime, the conformal time during
inflation then stretches arbitrarily far back into the past. However,
this superficial appearance of completeness is in fact a coordinate
artifact. This may be seen by changing to the closed slicing of de
Sitter spacetime. In this slicing, the universe ‘bounces’ at some
finite conformal time in the past, so that inflation is in fact pre-
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ceded by a deflationary phase in which all of inflation’s successes
during the expanding de Sitter phase would be precisely undone
in the preceding, collapsing de Sitter phase. So in order to build
a successful inflationary scenario, one must simply ignore the ear-
lier collapsing phase and assume that the universe just somehow
started out in the expanding phase. This is part of the well-known
initial conditions problem of inflation.

Even without changing to the closed slicing, one can identify
the problem by using the following coordinate-invariant definition
of geodesic completeness: that generic time-like geodesics – the
worldlines of massive freely falling particles – may be extended
arbitrarily far backward in proper time. It is natural to measure
the time along the particle worldline tp in units of m−1 where
m is the particle mass, i.e., the magnitude of the action for the
particle:

|S| =
∫

m dtp =
∫

dτ
m2aE(τ )2√

p2 + m2aE(τ )2
(7)

(see, e.g., [13]), where p is the particle’s (conserved) canonical mo-
mentum (and τ is the conformal time, as before). In the case of an
expanding de Sitter epoch stretching all the way back to zero scale
factor, the best possible case for inflation, we have aE ∝ −1/τ ,
where τ = −∞ corresponds to aE = 0. The integral converges at
the lower limit, meaning that the total proper time experienced
by the particle is finite, so the spacetime is geodesically incom-
plete. Since this was the best possible case, it follows that, in the
absence of an account of what preceded inflation, all inflationary
scenarios, even ‘eternal inflation’ scenarios, are geodesically incom-
plete [16].

In contrast, with the same criterion, all of our Higgs cyclic
models are geodesically complete. All massive particles receive a
mass contribution from the Higgs, and so the quantity maE in
(7) should be replaced by ghEaE , where g is some coupling con-
stant. Since ha is gauge-invariant, we can replace this ghEaE =
ghγ aγ = ghγ , where hγ is the Higgs expectation value in uni-
modular gauge. As we have seen from our solutions in Fig. 3b, if
no radiation is generated, the quantity hγ oscillates at fixed am-
plitude for cycle upon cycle, and so the integral (7) diverges as
τ is extended back into the past. If radiation is generated with
each new cycle, the amplitude of hγ increases as we follow the
universe back into the past, as indicated in Fig. 4, and the argu-
ment becomes even stronger. There are two possibilities: either
hγ remains finite, or it diverges at some finite value of confor-
mal time, τ∗ . From the action (4) one sees that it will do so
like hγ ∝ 1/(τ − τ∗). In this case, the action for a massive par-
ticle in Eq. (7) will diverge at τ∗ . Thus, with this definition of
geodesic completeness, we conclude that all cyclic Higgs scenar-
ios are geodesically complete to the past, whereas all inflationary
scenarios are not.

In sum, we have shown that the Higgs, if it is metastable,
has profound implications for cosmology. For big bang inflationary

cosmology, metastability is problematic: it is unexpected, requires
highly improbable initial conditions, and predicts a dire future in
which the metastable phase ends and the universe collapses in
a big crunch. By contrast, metastability dovetails with the cyclic
picture for which decay of the current vacuum is a fundamental
prediction, required to end the current cycle and begin the next.
Remarkably, our Weyl-invariant formulation of the standard model
has made it possible to construct an action that incorporates all
known microphysics and, at the same time, has classical solutions
that completely describe cyclic evolution, from bounce to expan-
sion to contraction to bounce again, with each cycle reproducing
similar physics that is like what we observe. We have further
demonstrated how the Higgs naturally makes the cyclic scenario
geodesically complete.
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