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Within conventional big bang cosmology, it has proven to be very difficult to understand why
today’s cosmological constant is so small. In this paper, we show that a cyclic model of the universe
can naturally incorporate a dynamical mechanism that automatically relaxes the value of the
cosmological constant, including contributions to the vacuum density at all energy scales. Because
the relaxation time grows exponentially as the vacuum density decreases, nearly every volume
of space spends an overwhelming majority of the time at the stage when the cosmological constant
is small and positive, as observed today.

O
ne of the greatest challenges in physics
today is to explain the small positive
value of the cosmological constant or,

equivalently, the energy density of the vacuum.The
observed value, 7 ! 10j30 g/cm3, is over 120
orders of magnitude smaller than the Planck
density, 1093 g/cm3, as the universe emerges from
the big bang, yet its value is thought to be set at
that time. Even more puzzling, the vacuum density
receives a series of contributions from lower en-
ergy physical effects, including the electroweak
and quantum chromodynamics (QCD) transitions,
that only become important at a later stage.
Explaining today_s tiny value requires a mecha-
nism capable of canceling many very different
contributions with near-perfect precision.

One long-standing hope had been to find a
symmetry (1) or quantum gravity effect (2, 3) that
forces the vacuum density to be zero. Another
hope had been to find a relaxation mechanism
driving it to zero in the hot early universe as the
universe expands. These hopes have been hard to
reconcile with cosmic inflation and, in any case,
have been dashed by recent observations indicat-
ing that the vacuum density is small, positive, and
very nearly constant (4, 5). Now it is apparent that
one does not want a complete cancellation of the
cosmological constant. And, in order for a
relaxation mechanism to operate within the
standard inflationary picture, the relaxation time
must at first be much longer than the Hubble time,
so inflation can take place; then much shorter than
the Hubble time so that nucleosynthesis and
structure formation can occur; and then, after
that, much longer than the Hubble time again
so that the vacuum density is nearly constant
today, as observed. Despite many attempts, no
simple and compelling mechanism has been
found. The frustration has been enough to drive
many physicists to consider anthropic expla-

nations (6, 7), in which one assumes that the
vacuum density takes on all possible values in
different regions of space, but that life is only
possible in one of the rare regions where the
vacuum density is exponentially small.

In this paper,we point out that a cyclicmodel of
the type described in (8, 9) reopens the possibility
of solving the cosmological constant problem with
a natural, monotonic relaxation mechanism. In
these models, each cycle consists of a hot big bang
followed by a nearly vacuous period of dark
energy domination, ending with a crunch that
initiates the next bang. The duration of a cycle is
typically on the order of a trillion years. There is
no known limit to the number of cycles that have
occurred in the past, so the universe today can
plausibly be exponentially older than today_s
Hubble time and still form galaxies and stars as
observed today. Within this cyclic framework, it is
reasonable to consider mechanisms for relaxing
the cosmological constant whose time scale is al-
ways far greater than today_s Hubble time. The
cosmological constant is exponentially smaller
than one might have guessed on the basis of the
big bang picture precisely because the universe is
exponentially older than the big bang estimate, so
the cosmological constant has had a very long
time to reduce in value from the Planck scale to
the miniscule value observed today. Furthermore,
we will show that it is natural to have mechanisms
inwhich the relaxation time increases exponentially
as the vacuumdensity approaches zero from above,
resulting in a universe in which nearly every vol-
ume of space spends an exponentially longer time
in a state with small, positive cosmological constant
than in any other state. This is in stark contrast to
anthropic explanations, according towhich the only
regions of space ever capable of producinggalaxies,
stars, planets, and life are exponentially rare.

Dynamical relaxation: a worked example. As
a specific example of a dynamical relaxation
mechanism, we adapt an idea first discussed by
Abbott (10) in the context of standard big bang
cosmology [see also (11)]. In Abbott’s model, the
vacuum energy density of a scalar field gradually
decays through a sequence of exponentially slow
quantum tunneling events, relaxing an initially

large positive cosmological constant to a small
value. In spite of some appealing features, Abbott
found that the mechanism failed, as we will
explain, within the context of a big bang universe,
essentially because the relaxation occurs far too
slowly compared to a Hubble time. In this paper,
however, we show that the mechanism becomes
viable within the cyclic universe picture.

Abbott’s proposal introduces an axion-like
scalar field, f, coupled to the hidden nonabelian
gauge fields through a pseudoscalar coupling
(f/f )F*F, with f representing some high energy
mass scale and where F is the field gauge strength
and F* is its dual. The theory is assumed to have
a classical symmetry

f Y fþ constant ð1Þ

which is softly broken at low energies by various
effects. Integrating out the gauge fields induces a
potential of jM4 cos(f/f ), where M is the scale
at which the gauge coupling becomes strong.
[Fields of this type are commonly invoked to
suppress charge-parity (CP) violation in the
strong interactions (12–14) and are also ubiqui-
tous in string theory.]

It is natural for M to be very small as a con-
sequence of the slow (logarithmic) running of the
coupling in a nonabelian gauge theory. For ex-
ample, in QCD with six flavors, LQCD 0
MPlexp[j2p/(7aQCDMPl)] is about 100 MeV if
the coupling strength at the Planck scale
aQCD(MPl) is about 1/50. [Here and below, MPl

is equal to (8pG)j1/2.] In Abbott’s model for the
hidden axion field, M replaces LQCD and is
similarly expressed in terms of the relevant
coupling to hidden gauge fields. For example, if
the hidden sector were exactly like QCD, taking
a(MPl)È 1/75 would giveMÈ 10j3 eV, a viable
value for our model. (Our choices are less extreme
than those in Abbott’s paper; in the 1980s, his goal
was to obtain a very small vacuum density,
whereas ours is to explain the observed value.)

The cosine potential breaks the continuous
symmetry in Eq. 1 down to a discrete subgroup,
f Y f þ 2pN, where N is an integer. The dis-
crete symmetry is also assumed to be softly
broken by a term proportional to e, resulting in
a ‘‘washboard’’ effective potential:

VðfÞ 0 jM4 cos
f
f

! "
þ e

f
2pf

þ Vother

ð2Þ

where Vother includes all other contributions to the
vacuum density. (The linearity of the second, soft
breaking term is inessential: Any potential will do
as long as it is very gently sloping in the region of
interest, around V 0 0.) Provided that e G M4,
Eq. 2 has a set of equally spaced minima VN, with
effective cosmological constant Ltotal spaced by
VN j VNj1 0 e (Fig. 1). No matter what Vother is,
there is a minimum with Ltotal 0 V0 in the range
0 e V0 G e. Although e must be chosen to be
very small in order to account for today’s tiny
vacuum density, this choice is technically natural
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within the model because all quantum corrections
to e are proportional to e. Hence, Abbott’smodel is
a self-consistent low-energy effective theory capa-
ble of cancelling contributions to the vacuum
density coming from any other source.

In Abbott’s scheme, the smallness of the cos-
mological constant today is related through the
relaxationmechanism to the smallnessof theparam-
etersM and e in the potential V(f). Effectively, the
intractable problem of naturally obtaining an
exponentially small cosmological constant is trans-
muted into a tractable problem of naturally ob-
taining small axion interaction parameters.

Abbott assumed that the universe emerges from
the big bangwith some large positive value of f and
quickly settles into a minimum with large positive
VN, driving a period of de Sitter expansion that
dilutes away any matter and radiation. Over time
the field f then works its way slowly but in-
exorably downhill. In flat spacetime, the tunneling
events would occur at a constant rate independent
of N. However, once the effects of gravity are
included, the tunneling rate becomes slower and
slower as VN decreases. As we shall see, the uni-
verse remains in the last positive minimum for a
relative eternity compared with the time spent in
reaching it. This is the basis for our claim that the
most probable value for the vacuum density in the
model is that of the last positive minimum.

Assuming the field starts high up the potential,
VN d M2MPl

2, de Sitter fluctuations overwhelm
the energy barriers and the field makes its way
quickly downhill. But as VN falls below M2MPl

2,
the barriers become increasingly important and the
field progresses downward by quantum tunneling
via bubble nucleation (15). Upward tunneling is
also allowed but hugely suppressed in the param-
eter range of interest (16).

For simplicity, we shall focus on the parameter
range f 2/MPl

2 ¡ b G 1, where b K e/M4 is the
ratio of the difference between energy minima to
the height of the energy barrier. In the semi-
classical approximation, the rate for nucleating
bubbles of vacuum energy density VNj1

beginning from the VN phase is G(N) º
exp[jB(N)], where B(N) is the Euclidean
action for the tunneling solution. In order to
describe the scaling of B(N) with N, we shall

neglect unimportant numerical coefficients and
approximate VN , bNM4.

As f tunnels toward minima with de-
creasing N, the nucleation rate decreases mono-
tonically through three scaling regimes that
match smoothly onto one another:

1) For N 9 MPl
2/( f 2b) K NHM, the de Sitter

radius is smaller than the bubble wall thickness,
ÈfMj2, and the relevant instanton is the
Hawking-Moss solution (17). In this regime,
B(N) is proportional to Nj2.

2) For NCD G N G NHM, where NCD K
MPl

2b/f 2, the relevant instantons are of the
Coleman-De Luccia type (15) and the thin wall
approximation becomes increasingly accurate.
The bubbles are in the scaling regime de-
scribed by Parke (18), where the bubble radius
is controlled by gravitational effects. In this
regime, B(N) is proportional to Nj3/2.

3) As N falls below NCD, the bubble radius
becomes much smaller than the de Sitter radius,
and the instantons are well approximated by the
flat spacetime bubble solution. Although grav-
itational effects increase the action by only a
small factor in this regime, the correction is very
important because B0 is so large. The leading
gravitational correction is given by

BðNÞ 0 B0 1 j
3

2

ðVN þ VN j 1ÞT 2

M2
Ple

2

! "
ð3Þ

where the flat spacetime bubble action, B0, equals
(27/8)p2T4/e3, with T as the wall tension. In a
cosine potential this is 8M 2f. B0 is an enormous
number,È10110, for plausible parameters fÈ 1014

GeV, b È 0.1, and M È 10j3 eV. The grav-
itational correction causes the bubble action to
decrease linearly with N in this final regime. Thus,
as N approaches zero from above, the time spent
at vacuum density VN scales parametrically as
exp[jB0(N/NCD)], where NCD is given above. For
example, with our chosen parameters the time
spent at the last positive value of the vacuum
energy density is more than 1010110 times longer
than the entire time spent before it.

Thewhole process endswhen f tunnels through
to negative potential energy. Then, the negative
potential causes the space within the bubble to

collapse in a time of order one Hubble time. (For
this reason, it makes no difference whether the field
could have tunneled further downhill or not because
the region will collapse before it tunnels further
downhill.) Space outside the bubble continues to
expand from cycle to cycle, so there always remain
regionswith positive cosmological constant.Hence,
the relaxation process we have described naturally
leads to a universe that is overwhelmingly likely to
possess a small positive cosmological constant, in
agreement with observation.

Despite its attractive features, the proposal
proves to be fatally flawed in a standard big bang
cosmology setting, as Abbott himself pointed out,
because of the ‘‘empty universe problem.’’ Each
time the universe is caught in a minimum, it
undergoes a period of inflation that empties out all
matter and radiation. When a bubble is nucleated,
its interior is nearly empty, too. At most, it contains
an energy density, e, and even if this is turned
entirely into matter and radiation it is far too low to
make planets, stars, or galaxies. In fact, whatever
density does lie within the bubble is rapidly diluted
away by the next bout of de Sitter expansion. The
process continues; new bubbles are formed within
the old, but at each stage the energy density is far
too small to explain the observeduniverse. In effect,
the problem is that the relaxation process is too slow
for standard big bang cosmology, so that the
universe is empty by the time the cosmological
constant reaches the requisite value.

Cyclic model with dynamical relaxation.
With this thought inmind,wenow turn to the cyclic
model of the universe (8, 9). According to the
cyclic picture, each big bang is a collision between
orbifold planes (branes) along an extra dimension
of space, as might occur in heterotic M-theory
(19). A weak, springlike force draws the branes
together at regular intervals, resulting in periodic
collisions that fill the universe with new matter
and radiation. After each collision, the branes
separate and start to re-expand, causing matter and
radiation to cool and spread out. Eventually, the
matter and the radiation become so dilute that the
potential energy associatedwith the interbrane force
takes over.

In the low energy four-dimensional (4D) ef-
fective theory, the interbrane distance can be de-
scribed by a modulus field,y, that moves back and
forth along its effective potential. When the branes
are far apart, the potential energy density is positive
and acts as dark energy, causing the branes to
expand at an accelerating rate and diluting away the
matter and the radiation created at the bang. At the
same time, the force draws the branes together,
causing the potential energy density to decrease
from positive to negative. As the branes accelerate
toward one another, their expansion slows.

Ripples in the branes caused by quantum fluc-
tuations are amplified by the interbrane force as the
branes approach one another into a scale-invariant
spectrum of growing energy density perturbations.
The branes remain stretched out, though, and any
matter and radiationwithin them remains dilute. So,
after a period of a trillion years or so, the nearly

Fig. 1. The effective cosmological con-
stant, Ltotal, for the washboard potential
defined in Eq. 2 can take discrete values
depending on which minimum f occu-
pies. In the scenario presented here, the
time spent in the lowest positive mini-
mum is exponentially greater than the
entire time spent in all other minima.
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empty branes collide, creating new matter and
radiation and initiating a new cycle of cosmic evo-
lution. In dealing directly with the big bang
singularity, the cyclic scenario poses new chal-
lenges to fundamental theory, and some aspects are
still being actively debated (20–24). Here, we shall
assume the cyclic picture is valid.

Now, let us suppose we add to this story the
axion-like field f and the associated hidden gauge
sector as entities on one of the two branes.
Surprisingly, although it was not invented for this
purpose, the cyclic model has just the right
properties to make Abbott’s mechanism viable,
leading to the prediction we have emphasized: a
small, positive cosmological constant. Four features
inherent to the cyclic model play a key role in
rendering the combined model viable.

First and foremost, the cyclic model regularly
replenishes the supply of matter and radiation,
instantly solving the empty universe problem.
Brane collisions occur every trillion years or so,
an infinitesimal time compared with the eons it
takes the universe to tunnel from one minimum to
the next. So, between each step down the wash-
board potential, the universe undergoes exponen-
tially many cycles. Each bubble that is nucleated
fills with matter and radiation at the cyclic reheat
temperature, Treheat È 108 GeV or so (21), at each
new brane collision. The value of e is far smaller
than the energy scale associated with the collision,
so the washboard potential has little effect on re-
heating. Instead, it controls the low energy density,
de Sitter–like phase of each cycle, ensuring the
cycling solution is a stable attractor (9). For
f d Treheat, f is only weakly coupled to the
matter and radiation, and the reheating process
does not significantly affect the evolution of f.

A second essential element of the cyclic model
is the orbifold (brane) structure. If f were coupled to
the usual 4D Einstein metric, its kinetic energy
would be strongly blueshifted during the periods of
Einstein-frame contraction. Instead of proceeding in
an orderlymanner down thewashboard potential, it
would be excited by the contraction and jumpout of
the minimum, accelerating off to infinity as the
crunch approached. In the cyclic model, the
behavior is quite different because f couples to
the induced metric on the brane, not the 4D ef-
fective Einstein-frame metric. The brane expands
exponentially from cycle to cycle and never con-
tracts to zero; only the extra dimension that sep-
arates the branes does that. Consequently, the
kinetic energy of f is red-shifted and diluted during
every cycle, even during the phases when the extra
dimension (and the Einstein-frame 4D effective
scale factor) contracts to zero. Thus, f remains
trapped in its potential minimum for exponentially
long periods until the next bubble nucleation occurs.

The reheating of the universe at the beginning
of each cycle also does not excite f because it is so
weakly coupled. In fact, by causing the expansion
to decelerate and hence suppressing the de Sitter
fluctuations in f, the matter and the radiation
actually decrease the nucleation rate. The majority
of tunneling events occur during vacuum energy

domination, which is the longest phase of each
cycle.

A third advantageous feature of the cyclic
model is that, because the homogeneity and isot-
ropy of the universe and the generation of density
perturbations are produced by very low-energy
physics, there is no inflation and, hence, no need
to tune the relaxation to be slow and then fast.

A fourth critical aspect of the cyclic model is
that dark energy acts as a stabilizer. By diluting the
density of matter and radiation and any random
excess kinetic energy of the branes produced at the
previous bounce, the dark energy ensures that the
cycling solution is a stable attractor (9). When we
add the washboard potential, the dark energy
density depends on V(f). The value decreases by e
each time a bubble is nucleated. As long as the
dark energy density is positive, the cyclic solution
remains a stable attractor. Once the sum becomes
negative, the periodic cycling comes to an end.
Most likely, the interior of the negative potential
energy bubble collapses into a black hole,
detaching itself from the universe outside it and
ending cycling in that small patch of space, but the
rest of the universe continues to cycle stably.

Putting these ideas together, the cyclic model
and Abbott’s mechanism are merged into a new
scenario that greatlymodifies both. In the combined
picture, there are two fundamental time scales that
govern the long-term evolution of any patch of
universe: the cycling time, tcycle, and the time it
takes to nucleate bubbles, tN. The latter increases
exponentially as the universe tunnels from large N
toward N 0 0, and, during each of the stages we
have described, tN is exponentially greater than
tcycle. So, for each jump in f the universe
undergoes many cycles and many big bangs.
When VN is large, the vacuum energy density
dominates the universe at an earlier point in the
cycle compared with when VN is small, before
matter has a chance to cool and form stars, planets,
or life. But, nothing happens to disrupt the evo-
lution. The universe simply continues cycling as f
continues to hop down the potential, each step
taking exponentially longer than the one before.
Finally, VN becomes small enough that structure
begins to form. How big N is before this occurs
depends on e; for our example above, galaxy
formation occurs during the last few hundred steps
or so. However, exponentially more time and more
cycles are spent at V 0 V0 than at any other value.

Discussion. We have focused on Abbott’s
particular mechanism, but we can extract from this
case the conditions that are generally required: (i) a
relaxation time much greater than today’s Hubble
time and (ii) a dynamics that collapses or recycles
any regionswith negative cosmological constant on
a much shorter time scale. In our example, the
relaxation time increases as the cosmological
constant approaches zero, so that the system spends
most of the time at the lowest positive value. How-
ever, it is also interesting to consider other param-
eter ranges or other forms for V(f), including the
pure linear potential invoked in the anthropic
model of (6), which has no local minimum to be

fixed. In this model, the relaxation time decreases
as the cosmological constant approaches zero from
above. By introducing cycling and restricting
attention to the past light cone of any observer,
we find that most galaxies are produced when the
vacuum density is smaller, but not much smaller,
than the matter density.

In either example, our result is a universe in
which the cosmological constant L(t) is an ultra-
slowly varying function of time t and in which
virtually every patch of space proceeds through
stages of evolution that include ones in which
L(t) is small enough to be habitable for life. It is
interesting to contrast this situation with the
anthropic picture, especially versions based on
inflationary cosmology, for which the fraction of
habitable space is infinitesimally small. All other
things being equal, a theory that predicts that life
can exist almost everywhere is overwhelmingly
preferred by Bayesian analysis (or common sense)
over a theory that predicts it can exist almost
nowhere.

Although the relaxation time scale is far too
slow to be detectable, the general picture we have
suggested here can be falsified. First, because it
relies on the cyclic model, it inherits the cyclic pre-
diction for primordial gravitational waves (25).
Second, one might look for other implications of
having an exponentially long time for fields or
couplings to evolve. For example, axions in QCD
and string theory with f d 1012 GeV are well
motivated theoretically but ruled out in conven-
tional inflationary theory because de Sitter fluctua-
tions typically excite the field to a value where its
energy density overdominates the universe today
(26). Some propose resolving this dilemma, also,
using the anthropic principle (27, 28), but then
the same reasoning suggests that axions should
contribute all or most of the dark matter density
today (29). In the alternative picture we have
presented, though, there is no inflation and axions
are never excited. So, finding axions with large f
and negligible density would be an embarrass-
ment for the inflationary picture but would fit
naturally in the picture outlined here. Similar
considerations apply to other solutions to the
strong CP problem (30) where a very long
relaxation time may be useful.
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Regulatory Blueprint for a
Chordate Embryo
Kaoru S. Imai,1 Michael Levine,2 Nori Satoh,1 Yutaka Satou1*

Ciona is an emerging model system for elucidating gene networks in development. Comprehensive
in situ hybridization assays have identified 76 regulatory genes with localized expression patterns
in the early embryo, at the time when naı̈ve blastomeres are determined to follow specific cell
fates. Systematic gene disruption assays provided more than 3000 combinations of gene
expression profiles in mutant backgrounds. Deduced gene circuit diagrams describing the
formation of larval tissues were computationally visualized. These diagrams constitute a blueprint
for the Ciona embryo and provide a foundation for understanding the evolutionary origins of the
chordate body plan.

D
uring the past three decades, there has
been remarkable progress in identifying
the regulatory genes and signaling path-

ways responsible for the development of a variety
of tissues and organs in worms, fruit flies, sea
urchins, zebrafish, frogs, chicks, and mice. How-
ever, there are just a few cases where this in-
formation has been integrated to produce gene
regulation networks embodying the functional
interconnections among the genes responsible for
a given developmental process. The best success
has been obtained for the specification of endo-
mesoderm in the pregastrular sea urchin embryo
(1) and the dorsal-ventral patterning of the early
Drosophila embryo (2). Significant progress has
also been made on the specification of the
BSpemann organizer[ in the Xenopus embryo (3).

The ascidian Ciona intestinalis provides an
ideal experimental system to elucidate gene reg-
ulatory networks. The ascidian tadpole shares a
common body plan with vertebrates (4), including
a notochord centered in the tail that is flanked
dorsally by the nerve cord, laterally by muscle,
and ventrally by endoderm. The mature ascidian
larva is composed of È2600 cells, and the
genome contains only 16,000 genes (5). This
genetic and cellular simplicity offers the promise
of superimposing gene networks onto the behav-

ior of individual cells during specification and
differentiation in early embryos. Such networks
would provide a detailed understanding of
complex morphogenetic processes and would
establish a foundation for determining the evolu-
tionary origins of chordate features in lower Deu-
terostomes (e.g., starfish and acorn worms) and
their subsequent elaboration in vertebrates.

Here we present the systematic analysis of the
76 zygotic regulatory genes controlling Ciona
embryogenesis during the time when the basic
chordate tissues are specified and begin to
differentiate. Particular efforts focus on the
transcription factors and signaling components
dedicated to the major tissues of the early tadpole.
Macho-1, Tbx6b, and ZicL are expressed in the tail
muscles (6–9); b-catenin and Lhx3 in the
endoderm (10, 11); Fgf9/16/20, FoxA-a, FoxD,
ZicL, and Brachyury in the notochord (7, 12–14);
and Fgf9/16/20, Nodal, Otx, and GATA-a in the
CNS (15, 16). Gene disruption and in situ
hybridization assays were used to create circuit
diagrams showing the functional interconnec-
tions among the signaling pathways and reg-
ulatory factors governing the dynamic cellular
interactions underlying the formation of the
nerve cord, notochord, heart, and other key
chordate tissues. These circuit diagrams consti-
tute a blueprint for Ciona embryogenesis.

Regulatory codes for defined lineages.
Previous comprehensive in situ hybridization
assays showed that the Ciona genome contains
65 genes encoding sequence-specific transcrip-
tion factors (TFs) and 26 genes encoding com-
ponents of cell signal transduction molecules (STs)

that are zygotically expressed between the 16-cell
and early gastrula stages of embryogenesis (17, 18).
Because of difficulties measuring zygotic tran-
scription of genes expressed both maternally and
zygotically, we excluded those genes exhibiting
abundant maternal transcripts, thereby restricting
the total to 53 TF genes and 23 ST genes (table
S1). We do not regard the exclusion of maternal
genes as a major limitation, because they are used
to establish a regulatory prepattern in 16-cell em-
bryos. The link between this prepattern and the
establishment of definitive larval tissues is the
major focus of the present study.

From the 16-cell to early gastrula (around 110-
cell) stage, most of the blastomeres can be assigned
a unique identity on the basis of the expression of
specific combinations of TF genes (regulatory
code; summarized in fig. S1). There is a close
correspondence between establishing different
regulatory codes and forming diverse cell
lineages (Fig. 1). For example, the blastomeres
that form the primitive gut (endoderm; A6.1,
B6.1, and A6.3 at the 32-cell stage; and A7.1,
A7.2, A7.5, B7.1, and B7.2 in 64-cell embryos)
have slightly different regulatory codes during
early cleaving embryos (fig. S2, A and B) but
acquire identical codes at the early gastrula
stage. The b5.3 and b5.4 blastomeres contain
similar regulatory codes at the 16-cell stage.At the
gastrula stage, descendants that give rise to nerve
cord cells (b8.17 and b8.19) acquire a regulatory
code that is distinct from their sister cells that give
rise to epidermal cells (b8.18 and b8.20). The latter
cells have a code that is similar to those of other
epidermal cells, which indicates an inductive event
at or before this stage. All lineages except the B7.5
blastomeres, which form the heart (trunk ventral
cells) and anterior tail muscles, achieve clonal
restriction before gastrulation. Thus, the hierarchi-
cal clustering of cell identities with similar reg-
ulatory codes accurately reflects cell lineages and
the clonal restriction of cell fate and illuminates at
what point key molecular interactions occur to
establish a unique identity for each cell.

In order to define distinct neuronal cell iden-
tities, it was necessary to extend the analysis of
regulatory codes beyond the early gastrula stage
because of the complexity of neural cell types.
Systematic in situ hybridization assays suggested
that there are at least 13 distinct neuronal cell types
composing the future central andperipheral nervous
system at the late gastrula stage (Fig. 2, A and B;
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